Efficient design-space exploration of custom instruction-set extensions

نویسنده

  • Marcela Zuluaga
چکیده

Customization of processors with instruction set extensions (ISEs) is a technique that improves performance through parallelization with a reasonable area overhead, in exchange for additional design effort. This thesis presents a collection of novel techniques that reduce the design effort and cost of generating ISEs by advancing automation and reconfigurability. In addition, these techniques maximize the perfomance gained as a function of the additional commited resources. Including ISEs into a processor design implies development at many levels. Most prior works on ISEs solve separate stages of the design: identification, selection, and implementation. However, the interations between these stages also hold important design trade-offs. In particular, this thesis addresses the lack of interaction between the hardware implementation stage and the two previous stages. Interaction with the implementation stage has been mostly limited to accurately measuring the area and timing requirements of the implementation of each ISE candidate as a separate hardware module. However, the need to independently generate a hardware datapath for each ISE limits the flexibility of the design and the performance gains. Hence, resource sharing is essential in order to create a customized unit with multi-function capabilities. Previously proposed resource-sharing techniques aggressively share resources amongst the ISEs, thus minimizing the area of the solution at any cost. However, it is shown that aggressively sharing resources leads to large ISE datapath latency. Thus, this thesis presents an original heuristic that can be parameterized in order to control the degree of resource sharing amongst a given set of ISEs, thereby permitting the exploration of the existing implementation trade-offs between instruction latency and area savings. In addition, this thesis introduces an innovative predictive model that is able to quickly expose the optimal trade-offs

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating and evaluating application-specific hardware extensions

Modern platform-based design involves the application-specific extension of embedded processors to fit customer requirements. To accomplish this task, the possibilities offered by recent custom/extensible processors for tuning their instruction set and microarchitecture to the applications of interest have to be exploited. A significant factor often determining the success of this process is th...

متن کامل

Design space exploration tools for the ByoRISC configurable processor family

In this paper, the ByoRISC (“Build your own RISC”) configurable application-specific instruction-set processor (ASIP) family is presented. ByoRISCs, as vendor-independent cores, provide extensive architectural parameters over a baseline processor, which can be customized by application-specific hardware extensions (ASHEs). Such extensions realize multi-input multi-output (MIMO) custom instructi...

متن کامل

Application Analysis with Integrated Identification of Complex Instructions for Configurable Processors

An extensible and configurable processor is a programmable platform offering the possibility to customize the instruction set and/or underlying microarchitecture. Efficient application analysis can identify the application parameters and instruction extensions that would influence processor performance. An application characterization flow is presented and demonstrated on the Wavelet/Scalar Qua...

متن کامل

Automatic instruction-set architecture synthesis for VLIW processor cores in the ASAM project

The design of high-performance application-specific multi-core processor systems still is a time consuming task which involves many manual steps and decisions that need to be performed by experienced design engineers. The ASAM project sought to change this by proposing an automatic architecture synthesis and mapping flow aimed at the design of such application specific instruction-set processor...

متن کامل

A Framework for the Design Space Exploration of Software-Defined Radio Applications

This paper describes a framework for the design space exploration of resource-efficient software-defined radio architectures. This design space exploration is based on a dual design flow, using a central processor specification as reference for the hardware development and the automatic generation of a C-compiler based tool chain. Using our modular rapid prototyping environment RAPTOR and the R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010